Orbital stability of periodic peakons for a new higher-order <i>μ</i>-Camassa–Holm equation

نویسندگان

چکیده

The consideration here is a higher-order μ-Camassa–Holm equation, which extension of the equation and retains some properties modified equation. By utilizing inequalities with maximum minimum solutions related to first three conservation laws, we establish that periodic peakons this are orbitally stable under small perturbations in energy space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital Stability of Peakons for a Generalization of the Modified Camassa-holm Equation

The orbital stability of the peaked solitary-wave solutions for a generalization of the modified Camassa-Holm equation with both cubic and quadratic nonlinearities is investigated. The equation is a model of asymptotic shallow-water wave approximations to the incompressible Euler equations. It is also formally integrable in the sense of the existence of a Lax formulation and bi-Hamiltonian stru...

متن کامل

Orbital stability of periodic waves for the nonlinearSchrödinger equation

The nonlinear Schrödinger equation has several families of quasi-periodic travelling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the...

متن کامل

Periodic waves of a discrete higher order nonlinear Schrödinger equation ∗

The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...

متن کامل

Stability of peakons for the Degasperis-Procesi equation

The Degasperis-Procesi equation can be derived as a member of a oneparameter family of asymptotic shallow water approximations to the Euler equations with the same asymptotic accuracy as that of the CamassaHolm equation. It is noted that the Degasperis-Procesi equation, unlike the Camassa-Holm equation, has not only peakon solitons but also shock peakons. In this paper, we study the orbital sta...

متن کامل

Stability of peakons for the generalized Camassa - Holm equation ∗

We study the existence of minimizers for a constrained variational problems in H(R). These minimizers are stable waves solutions for the Generalized Camassa-Holm equation, and their derivative may have a singularity (in which case the travelling wave is called a peakon). The existence result is based on a method developed by the same author in a previous work. By giving examples, we show how ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2023

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0132297